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Abstract Bound states of the Hellmann potential, which is a superposition of the
attractive Coulomb (−A/r ) and the Yukawa (Be−Cr/r ) potential, are calculated by
using a generalized pseudospectral method. Energy eigenvalues accurate up to 13–14
significant figures, and densities are obtained through a nonuniform, optimal spatial
discretization of the radial Schrödinger equation. Both ground and excited states are
reported for arbitrary values of the potential parameters covering a wide range of
interaction. Calculations have been made for higher states as well as for stronger cou-
plings. Some new states are reported here for the first time, which could be useful for
future works. The present results are significantly improved in accuracy over all other
existing literature values and offers a simple, accurate and efficient scheme for these
and other singular potentials in quantum mechanics.
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1 Introduction

A two-particle system interacting through a combination of the attractive Coulomb
and the Yukawa potential,

v(r) = −A/r + Be−Cr/r, (1)

has received considerable interest for several decades. In this equation, the parameters
A, B characterize the strength of the Coulomb and Yukawa potentials respectively;
C is the screening parameter and r signifies the distance between the two particles.
A,C are positive and B can be both positive as well as negative. Historically, such a
superposed potential with positive B was first studied by Hellmann [1–3] long times
ago and thereafter has been customarily used to include both positive and negative B.
This has found various important applications in the field of atomic and condensed
matter physics; e.g., the electron-core [4,5], electron-ion [6,7], inner-shell ionization
[8] problems, alkali hydride molecules [9], solid-state physics [10,11], etc.

From the theoretical perspectives, this potential has attracted considerable attention
from various workers. Like most other practical physical systems, the corresponding
Schrödinger equation (SE) does not offer exact analytical solutions in this case too,
and one has to resort to the approximate methodologies, such as the variational or the
perturbative approaches. Some important aspects of the bound-state spectra of this
system are the presence of complex level crossings [12] and the absence of accidental
degeneracies (characteristics of the pure Coulomb potential). Quite detailed calcula-
tions were performed [12] using the variational technique including 10 parameters for
wide ranges of the parameters in the potential corresponding to ground, as well as low
and moderately high values of the n and � quantum numbers. Shortly after that, shifted
large N expansion results [13] were reported for these systems which were more or
less of similar accuracy as those of [12], although with limited applicability. Besides,
attempts have been made to use first-order Rayleigh-Schrödinger perturbation theory
to provide approximate analytical formulas for the bound eigenstates [14]. Lately, a
combined Hellmann–Feynmann theorem and the principle of minimal sensitivity has
also been used to investigate these states [15]. Analytical formulas for the upper and
lower bounds [16] have been presented recently by using an envelope method in con-
junction with the comparison theorem. However, despite all these elegant formalisms,
there are several problems which deserve more careful and thorough examinations.
For example, the prescription of [13] yields reasonably good results for very weak
screenings and gradually worsens as B and C increase. For certain other choices of
the parameters, this leads to divergent energy series for some of the eigenstates. Anal-
ogous difficulties have also been faced in the recent treatment of these potentials [15]
using the shifted 1/N expansion. It is also worthwhile to note that although the vari-
ational results of [12] were quite accurate and so far have been used as a standard in
the literature for this potential, it would be useful and desirable to have more accurate
results for these states. The lack of such results in the literature is little surprising,
especially in the light of the fact that many excellent and high quality results have
been available for both the Coulomb and Yukawa potentials for many years (see for
example [17–19]). Thus a general reliable formalism which can offer accurate and
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physically meaningful results for arbitrary values of the interaction parameters for
both low as well as higher states, would have its own merit.

Hence it would be of some interest to investigate the spectra of these systems with
a fresh look. The purpose of this Letter is to employ the generalized pseudospectral
(GPS) method to solve the corresponding SE in a simple and accurate manner. To this
end, accurate eigenvalues and densities are reported for all the n ≤ 5 states and the
effects of varying the interaction parameters are studied by covering a large range.
The GPS method has emerged as a quite successful formalism to study a multitude of
atomic and molecular processes in the past years including both electronic structure
and dynamics calculations having Coulomb singularities. Recently it has also been
shown to be equally successful for the spiked harmonic oscillators, logarithmic and
power-law potentials, the Hulthen and Yukawa potentials as well as other singular
potentials [20–23]. Comparisons with the literature data have been made wherever
possible. The article is organized as follows: Sect. 2 gives a brief outline of the GPS
method used here to solve the SE in presence of the Hellmann potential. A discussion
of the results is made in Sect. 3, while we end with a few concluding remarks in Sect. 4.

2 The GPS formalism for the solution of Hellmann potential

This section presents an overview of the GPS formalism along with the mapping pro-
cedure used for solving the radial SE of a Hamiltonian containing a Hellmann potential
within the nonrelativistic framework. Only the essential steps are given and the rel-
evant details may be found elsewhere ([20–23] and the references therein). Unless
otherwise mentioned, atomic units are employed throughout this article.

The radial SE can be written in the following form,

[
−1

2

d2

dr2 + �(�+ 1)

2r2 + v(r)

]
ψn,�(r) = En,� ψn,�(r), (2)

where v(r) is given as in Eq. 1. Here n and � signify the usual radial and angular
momentum quantum numbers respectively.

One of the distinctive features of GPS method is that it allows one to work in a
nonuniform and optimal spatial discretization; a coarser mesh at larger r and a denser
mesh at smaller r , while maintaining a similar accuracy at both the regions. Thus it
suffices to work with a significantly smaller number of grid points efficiently, which
is in sharp contrast to some of the commonly used finite difference or finite element
methods for the singular potentials, where one is almost forced to use considerably
larger mesh, often presumably because of their uniform nature.

At the first step a function f (x) defined in the interval x ∈ [−1, 1] is approximated
by the N-th order polynomial fN (x) as follows,

f (x) ∼= fN (x) =
N∑

j=0

f (x j ) g j (x), (3)
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which guarantees that the approximation is exact at the collocation points x j , i.e.,

fN (x j ) = f (x j ). (4)

In the Legendre pseudospectral method which we use here, x0 = −1, xN = 1, and
the x j ( j = 1, . . . , N − 1) are obtained from the roots of the first derivative of the
Legendre polynomial PN (x) with respect to x , i.e.,

P ′
N (x j ) = 0. (5)

The g j (x) in Eq. 3 are called the cardinal functions given by,

g j (x) = − 1

N (N + 1)PN (x j )

(1 − x2) P ′
N (x)

x − x j
, (6)

and satisfy the unique property, g j (x j ′) = δ j ′ j . At this stage one can map the semi-
infinite domain r ∈ [0,∞] onto the finite domain x ∈ [−1, 1] by the transformation
r = r(x). Now introduction of the following algebraic nonlinear mapping,

r = r(x) = L
1 + x

1 − x + α
, (7)

where L and α = 2L/rmax are the mapping parameters, in conjunction with the
relation,

ψ(r(x)) = √
r ′(x) f (x), (8)

followed by a symmetrization procedure leads to the transformed Hamiltonian as
below,

Ĥ(x) = −1

2

1

r ′(x)
d2

dx2

1

r ′(x)
+ v(r(x))+ vm(x), (9)

where vm(x) is given by,

vm(x) = 3(r ′′)2 − 2r ′′′r ′

8(r ′)4
. (10)

This has the advantage that one deals with a symmetric matrix eigenvalue problem
which can be easily solved by standard available routines to yield accurate eigenvalues
and eigenfunctions. Note that vm(x) = 0 for the particular transformation.

We have carried out a large number of tests in order to make a detailed check on
the accuracy and reliability of the method by varying the mapping parameters so as to
produce “stable” results with respect to their changes. This procedure was applied for
a variety of potential parameters available in the literature. In this way, a consistent
set of parameters α = 25, N = 200 and rmax = 200 were chosen which seemed to
be appropriate for all the calculations performed in this work. The results are reported
only up to the precision that maintained stability and all our results are truncated rather
than rounded-off. Thus, all the results may be considered as correct up to the place
they are reported.

123



264 J Math Chem (2008) 44:260–269

3 Results and discussion

First in Table 1, we give the computed 2s eigenvalues for three values of the parameter
B, viz., 0.5,−0.5, and −2 as a function of the screening parameter C to demonstrate
the accuracy of the present calculations. For each B, four C values have been con-
sidered covering both the weak and strong regions. It may be noted here that for
all the calculations in this work, we assume A = 1; accordingly our B maps to
half of the corresponding rescaled parameter of [12], and the computed eigenvalues
obtained in a. u., are half of those of [12]. The results are compared with the (a) vari-
ational results [12], and (b) Rayleigh-Schrödinger perturbation calculations [14]. For
C = 0.001, only the former results are available. It is abundantly clear that the present
GPS values are significantly better than either of these previously reported results in
all the cases. For all these states, between [12] and [14], former results are seen to
be closer to present values than the latter ones. Usually the variationally calculated
eigenvalues match up to four to five significant figures with those of ours while the
perturbation results place these states at higher values in all but one instance (B =
−2, C = 2) and the accuracy gradually decreases with an increase in the screening
parameter C .

Next, the calculated binding energies (−En,�) of some of the lowest lying 1s − 5g
states below n ≤ 5 are presented for the strongly repulsive (B = +5) and strongly
attractive (B = −5) Yukawa potentials in Tables 2 and 3 respectively as a function
of the screening parameter C . Four values of C have been considered in both cases,
viz., 0.01, 1, 10 and 100 which essentially covers both the weak and strong regions.
1s − 4 f states were studied for a large number of C values ranging from 0.001 to 10
by [12] while from 0.05 to 10 by [13] and these are appropriately quoted here. To our
knowledge, no reference values are available for C > 10, and we report here some
results in the very high screening regions (C = 100). It is noticed that, the present
GPS eigenvalues are much superior to both the earlier reported values for all these
states. For the repulsive Yukawa potential case, the variational results [12] are seen
to match with our results in the moderate screening regions (C = 1, 10); whereas,
the accuracy in their result deteriorates for smaller C (0.01). Also the low-� states
deviate more than the high-� states. Furthermore, within a particular �, the errors
increase as the radial quantum number n increases. Thus the 1s, 2s, 3s and 4s states
for C = 0.01 are in error by 0.54%, 3.76%, 11.25% and 23.25% respectively. How-
ever, for the attractive Yukawa potentials, they show similar kind of accuracies and
agreements with the present results for both C = 0.01 and 10. Once again, the vari-
ational results [12] are seen to be somewhat better than the perturbation results [13].
For the 1s and 2s states of B = +5 and B = −5, appreciable deviations are noticed in
the calculations of [13] from ours (≈29.26% and 25.06% respectively); other s states
also suffer more compared to the p, d or f states. In both these cases, however, one
regains the hydrogen-like spectrum in the limit of C → ∞ (100 in the tables), as
expected.

123



J Math Chem (2008) 44:260–269 265

Ta
bl

e
1

C
om

pa
ri

so
n

of
th

e
ca

lc
ul

at
ed

ne
ga

tiv
e

ei
ge

nv
al

ue
s

(i
n

a.
u.

)
w

ith
th

e
lit

er
at

ur
e

fo
r

th
e

2s
st

at
es

as
fu

nc
tio

ns
of

B
an

d
C

B
C

−E
(T

hi
s

w
or

k)
−E

(L
ite

ra
tu

re
)

B
C

−E
(T

hi
s

w
or

k)
−E

(L
ite

ra
tu

re
)

0.
5

0.
00

1
0.

03
17

47
01

40
09

90
0.

03
17

45
a

0.
5

0.
00

5
0.

03
36

76
75

35
49

94
0.

03
36

75
a,

b

0.
5

2
0.

11
29

07
16

13
22

78
0.

11
29

05
a ,

0.
11

11
5b

0.
5

10
0.

12
33

90
07

95
03

13
0.

12
28

9a ,
0.

12
32

85
b

−0
.5

0.
00

1
0.

28
07

50
99

84
47

3
0.

28
07

5a
−0
.5

0.
00

5
0.

27
87

74
80

73
14

2
0.

27
87

75
a ,

0.
27

87
7b

−0
.5

2
0.

14
06

12
95

11
67

0
0.

14
06

1a ,
0.

13
94

3b
−0
.5

10
0.

12
68

36
65

98
87

8
0.

12
68

35
a ,

0.
12

67
15

b

−2
0.

00
1

1.
12

30
01

99
84

46
2

1.
12

30
0a

−2
0.

00
5

1.
11

50
49

80
66

91
3

1.
11

50
50

a ,
1.

11
50

35
b

−2
2

0.
20

10
04

49
38

45
6

0.
20

10
05

a ,
0.

20
21

9b
−2

10
0.

13
42

61
91

46
71

0
0.

13
42

4a ,
0.

13
18

7b

L
ite

ra
tu

re
re

su
lts

ha
ve

be
en

ap
pr

op
ri

at
el

y
co

nv
er

te
d

to
th

e
cu

rr
en

ts
ca

le
of

un
its

a
R

ef
.[

12
]

b
R

ef
.[

14
]

123



266 J Math Chem (2008) 44:260–269

Table 2 Comparison of the calculated negative eigenvalues (in a.u.) with the literature for B = +5 as
functions of the screening parameter C

State C = 0.01 C = 1 C = 10 C = 100

1s 0.002362763418
(0.00235a)

0.1393937847772
(0.139395a)

0.4219751601088
(0.421975a, 0.29851b

0.4981833709122

5s 0.001525033897 0.0144970380925 0.0193116714697 0.0199854358123
5d 0.001862762081 0.0195295800293 0.0199999884584 0.0199999999999
4 f 0.002300761996

(0.00229a)
0.0312056245649

(0.031205a)
0.0312499999917

(0.03125a, 0.03125b)
0.0312500000000

5 f 0.002054101204 0.0199657840037 0.0199999999929 0.0200000000000
5g 0.002260639328 0.0199992848683 0.0199999999999 0.0199999999999

Literature results have been appropriately converted to the current scale of units
a Ref. [12]
b Ref. [13]

Now we examine the effects of the variation of parameter B on the calculated
eigenvalues up to 1s through 5g. Tables 4 and 5 present such eigenvalues for moder-
ate screenings (C = 0.25) at four B values (−10,−1, 1, 100) and strong screening
(C = 1) at four B values (−25,−10, 1, 10) respectively. The reference values for these
states are quite scarce. n ≤ 4 states of C = 0.25 were calculated for B = −10,−1, 1
by [12] while for C = 1, all the n ≤ 5 states were reported for B = −25,−10 only,
in the same work [12]. As in the previous tables, the present method offers noticeably
improved results for all of these states compared to both of these. It appears that the
variational calculations [12] are relatively more accurate in the low screening regions
than in the stronger regions.

Now Fig. 1 shows the variation of the radial probability distribution functions with
respect to the interaction parameters B and C ; (a) shows this for C = 1 at four B
values, viz., −0.1, 1, 10 and 100 while (b) shows this for B = 0.5 at four C values,
viz., 0.01, 0.1, 1 and 10 respectively. It is seen that with an increase of B, the density
distribution oozes out to the larger values of r and the peak values get reduced, while
exactly opposite behavior is observed as the parameter C is increased. Additionally,

Table 3 Comparison of the calculated negative eigenvalues (in a.u.) with the literature for B = −5 as
functions of the screening parameter C

State C = 0.01 C = 1 C = 10 C = 100

1s 17.95006243069
(17.95005a)

13.56679686030 0.9788396316974
(0.97885a)

0.5020427358386

5s 0.6715273295205 0.0362575479838 0.0223084737740 0.0200162962261
5d 0.6714073958450 0.0214355247975 0.0200000117313 0.0200000000000
4 f 1.075741875123

(1.07575a)
0.0313020585157 0.0312500000082

(0.03125a, 0.0312b)
0.0312499999999

5 f 0.6712874380109 0.0200407809113 0.0200000000070 0.0200000000000
5g 0.6711274566209 0.0200007358716 0.0200000000000 0.0200000000000

Literature results have been appropriately converted to the current scale of units
a Ref. [12]
b Ref. [13]
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Table 4 Comparison of the calculated negative eigenvalues (in a.u.) with the literature for C = 0.25 as
functions of B

State B = −10 B = −1 B = 1 B = 100

1s 58.04198638290
(58.042a)

1.771691001196
(1.77169a)

0.1105241235947
(0.110525a)

0.0251808092657

5s 0.7519807159635 0.0271230027804 0.0142921176781 0.0067962156719
3d 4.498053096472

(4.498055a)
0.0862527058258

(0.086255a)
0.0451094116513

(0.04511a)
0.0221116573287

5d 0.7042645932150 0.0240731854698 0.0177686031869 0.0105703836625
5 f 0.6551355037045 0.0217548871225 0.0189834793491 0.0131097965268
5g 0.5870275279097 0.0203601943459 0.0197229049653 0.0161504601523

Literature results have been appropriately converted to the current scale of units
a Ref. [12]

Table 5 Comparison of the calculated negative eigenvalues (in a.u.) with the literature for C = 1 as
functions of B

State B = −25 B = −10 B = 1 B = 10

1s 313.7035561801
(313.7035a)

51.14471457780
(51.14245a)

0.2562317633033 0.1170817257811

5s 0.9549949909076
(0.9550a)

0.0619515214000
(0.0615a)

0.0175035546929 0.0135892847495

5d 0.5235991105174
(0.5236a)

0.0324039077933
(0.0323a)

0.0198787392313 0.0192456899035

5 f 0.1025542046267
(0.10175a)

0.0200939350152
(0.0201a)

0.0199927279413 0.0199358878025

5g 0.0200040154394
(0.0200a)

0.0200014959681
(0.0200a)

0.0199998554056 0.0199985879641

Literature results have been appropriately converted to the current scale of units
a Ref. [12]

the radial density distributions of the Hellmann potential (B = 1,C = 10) in Fig. 2
shows the desired number nodes and peaks for the first three states in (b), (c) and (d)
corresponding to � = 0, 1 respectively, along with the potential in (a).

Before passing, a few comments may be made. It is worth mentioning that although
many attractive and elegant formalisms have been proposed over the years, it is usually
quite a difficult task to achieve faster convergence and high accuracy results for the
singular potentials at the same time by using the standard finite difference methods.
As one author pointed out [24], a six- or seven-decimal place accuracy for the har-
monic potential including an inverse quartic and sextic anharmonicity required at least
80,000 radial grid points for some of the lower states. The GPS method, employed
in the current work possesses the simplicity of the finite difference and/or the finite
element methods while simultaneously retaining the attractive features of the basis-
set variational formalisms such as high accuracy and fast convergence. As already
mentioned, all the calculations in this work have been done with only 200 radial grid
points.
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4 Conclusion

Discrete bound-state spectra of the superposed Coulomb and Yukawa potentials, are
studied in detail by accurately calculating the eigenvalues and densities through the
GPS method. The formalism is simple, computationally efficient, reliable and accu-
rate. Low as well as high states are calculated for arbitrary values of the interaction
parameters covering weak and strong couplings with equal ease and accuracy. For all
the 15 states belonging to n ≤ 5, the present method offers results which significantly
improves all other hitherto reported literature values. In view of the simplicity and
accuracy offered by this method for the physical systems studied in this work, it might
have equally successful and fruitful applications in various other branches of quantum
mechanics.

Acknowledgments AKR thanks Professors D. Neuhauser and S. I. Chu for useful discussions. He
acknowledges the warm hospitality provided by the Univ. of California, Los angeles, CA, USA. EP grate-
fully acknowledges Q-Chem Inc., for support. AFJ thanks the UNAM for valuable financial resources and
DG APA for support.

References

1. H. Hellmann, Acta Physicochim, URSS 1, 913 (1935); ibid. 4, 225 (1936); ibid. 4, 324 (1936)
2. H. Hellmann, J. Chem. Phys. 3, 61 (1935)
3. H. Hellmann, W. Kassatotchkin, J. Chem. Phys. 4, 324 (1936)
4. J. Callaway, P.S. Laghos, Phys. Rev. 187, 192 (1969)
5. G. McGinn, J. Chem. Phys. 53, 3635 (1970)
6. V.K. Gryaznov, M.V. Zhernokletov, V.N. Zubarev, I.L. Losilevskii, V.E. Tortov, Zh. Eksp. Teor. Fiz.

78, 573 (1980) [Sov. Phys. JETP. 51, 288 (1980)]
7. V.A. Alekseev, V.E. Fortov, I.T. Yakubov, Usp. Fiz. Nauk. 139, (1983) [Sov. Phys. Usp. 26, 99 (1983)]
8. J.N. Das, S. Chakravarty, Phys. Rev. A 32, 176 (1985)
9. Y.P. Varshni, R.C. Shukla, Rev. Mod. Phys. 35, 130 (1963)

10. J.C. Philips, L. Kleinmann, Phys. Rev. A 116, 287 (1959); ibid. 118, 1153 (1960)
11. A.J. Hughes, J. Callaway, Phys. Rev. A 136, 1390 (1964)
12. J. Adamowski, Phys. Rev. A 31, 43 (1985)
13. R. Dutt, U. Mukherji, Y.P. Varshni, Phys. Rev. A 34, 777 (1986)
14. M. Bag, R. Dutt, Y.P. Varshni, J. Phys. B 20, 5267 (1987)
15. M.G. Kwato Njock, M. Nsangou, Z. Bona, S.G. Nana Engo, B. Oumarou, Phys. Rev. A 61, 042105

(2000)
16. R.L. Hall, Q.D. Katabeh, Phys. Lett. A 287, 183 (2001)
17. E.R. Vrscay, Phys. Rev. A 33, 1433 (1986)
18. C. Stubbins, Phys. Rev. A 48, 220 (1993)
19. M.A. Núñez, Phys. Rev. A 47, 3620 (1993); 1591 (2005)
20. A.K. Roy, Phys. Lett. A 321, 231 (2004)
21. A.K. Roy, J. Phys. G 30, 269 (2004)
22. A.K. Roy, Int. J. Quant. Chem. 104, 861 (2005)
23. A.K. Roy, Pramana–J. Phys. 65, 01 (2005)
24. V.C. Aguilera-Navarro, G.A. Estévez, R. Guardiola, J. Math. Phys. 31, 99 (1990)

123


	Accurate calculation of the bound states of Hellmann potential
	Abstract
	Introduction
	The GPS formalism for the solution of Hellmann potential
	Results and discussion
	Conclusion
	Acknowledgments
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


